Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 264: 115988, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039790

RESUMO

Galactose as a recognizing motif for asialoglycoprotein receptor (ASGPR) is a widely accepted vector to deliver cytotoxic agents in the therapy of hepatocellular carcinoma (HCC), however, the individual hydroxyl group of galactose (Gal) contributed to recognizing ASGPR is obscure and remains largely unanswered in the design of glycoconjugates. Herein, we designed and synthesized five positional isomers of Gal-anthocyanin Cy5.0 conjugates and three Gal-doxorubicin (Dox) isomers, respectively. The fluorescence intensity of Gal-Cy5.0 conjugates accumulated in cancer cells hinted the optimal modification sites of positions C2 and C6. Comparing to the cytotoxicity of other conjugates, C2-Gal-Dox (11) was the most potent. Moreover, Gal-Dox conjugates significantly the toxicity of Dox. A progressively lower internalization capacity and siRNA technology implied the cellular uptake and cytotoxicity directly related to the ASGPR expression level. Accordingly, position C2 of galactose may be the best substitution site via ASGPR mediation in the design of anti-HCC glycoconjugates.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Galactose , Receptor de Asialoglicoproteína/metabolismo , Neoplasias Hepáticas/patologia , Doxorrubicina/farmacologia , Glicoconjugados/farmacologia
2.
Eur J Med Chem ; 244: 114846, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283182

RESUMO

Autophagy is an essential homeostatic and catabolic process crucial for the degradation or recycling of proteins and cellular components. Drug resistance has been demonstrated to be closely implicated in increased autophagy. Autophagy inhibition to reverse drug resistance involves in the five stages of autophagy, including phagophore initiation, vesicle nucleation, vesicle elongation, vesicle fusion and cargo degradation. Herein, emphases were placed on discussions on the targets responsible for the upstream phagophore initiation and nucleation of autophagosome, as well as the ones mediating the downstream autophagosome and lysosome fusion and cargo degradation. The structure-activity relationships (SARs) and action mechanisms of the corresponding target-based small molecule autophagy inhibitors were analyzed and delineated. This review will provide a promising guidance for the design and optimization of drug-like scaffolds in the discovery of autophagy inhibitors able to eliminate drug resistance.


Assuntos
Autofagia , Desenho de Fármacos , Resistência a Medicamentos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Lisossomos/metabolismo , Fusão de Membrana , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...